
Accelerating	Analog	Design	
with	SystemC-AMS

May	2018

Américo Dias

October 28, 2019

Motivation	and	Problem	Statement

0.001

0.01

0.1

1.

10.

100.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Po
w
er
	C
on

su
m
pt
io
n	
(m

W
)

Rollout	Year

Power	requirement	for	IoT	module

2

For	illustration	purposes	only.	Quote:	goo.gl/MQj1St

“8.4	Billion	Connected	"Things"	used	in	2017”
Every	single	µW per device makes a huge impact worldwide.

Case	study:	How	to	reduce	existing	SDM	power	consumption?

3

Can	we	simplify	this?

Design	Strategy

1. Create	a	macromodel	based	modulator.
2. Use	the	ideal	model	to	set	a	reference	point.
3. Study	alternative	implementations	and	use	polynomial	fitting	to	capture	their	

behavior.
4. Implement	the	curve	fitting	results	in	the	macromodel	simulation	to	study	the	

degradation	on	the	circuit	performance	(SNR,	SNDR,	etc).

4

Predict	circuit	behaviour	before	spending	
time on	the	practical	implementation!

(i.e.	Feasibility	Study)

Inverter	based	gm	cell

5

Tao,	Sha	&	Chi,	Jiazuo &	Rusu,	Ana.	(2015).	Design	Considerations	for	Pipelined	
Continuous-Time	Incremental	Sigma-Delta	ADCs.	10.1109/ISCAS.2015.7168808.	

Spectre Macromodel Implementation

6

• Basic	spectre/spice	components	like	capacitors,	vccs,	and	bsource	for	modeling	the	third	order	fit.
• VerilogA	for	the	quantizer	and	dac,	and	part	of	the	common	mode	feedback	(not	shown).

SystemC-AMS	Model	Implementation

7

• ELN	(Electrical	Linear	Networks):	Has	most	of	the	passive	components	and	sources	like	spice,	however	doesn’t	have	
bsource	and	TDF	to	implement	the	third	order	fit.

• TDF	(Timed	Data	Flow):	The	TDF	model	of	computation	shall	define	the	procedural	behavior	that	processes	samples,	
which	are	tagged	in	time.

• Quantizer	and	DAC	can	be	implemented	in	standard	SystemC.

GM	Cell	implementation	in	Spectre

8

GM	Cell	implementation	in	SystemC-AMS

9

GM	Cell	implementation	in	SystemC-AMS

10

// Capacitors

cdiff = new sca_eln::sca_c("cdiff", cdiff_value);
cdiff->p(vop);
cdiff->n(von);

cp = new sca_eln::sca_c("cp", cp_value);
cp->p(vop);
cp->n(vop_cap);

cn = new sca_eln::sca_c("cn", cn_value);
cn->p(von);
cn->n(von_cap);

// ESR for better convergence

ifb_r_p = new sca_eln::sca_r("ifb_r_p", 1e-9);
ifb_r_p->p(vop_cap);
ifb_r_p->n(gnd);

ifb_r_n = new sca_eln::sca_r("ifb_r_n", 1e-9);
ifb_r_n->p(von_cap);
ifb_r_n->n(gnd);

// DAC feedback
ifb_p = new sca_eln::sca_de::sca_isource("ifb_p", vdac_gm);
ifb_p->p(vop);
ifb_p->n(von);
ifb_p->inp(sc_in_vdac);

GM	Cell	implementation	in	SystemC-AMS

11

/**
* Processing thread
*/
void sca_tdf_sdm_idiff_calc::processing(void) {
double vin = sca_tdf_in_vin.read();
double vout = sca_tdf_in_vout.read();

sca_tdf_out_iout.write(mult*(coef_0 +
coef_1 * vin +
coef_2 * vout +
coef_3 * pow(vin,3) +
coef_4 * pow(vout, 3) +
coef_5 * pow(vin-vout,2)*(vin+vout)));

}

Quantizer	in	VerilogA and	SystemC-AMS

12

/**
* Processing thread
*/
void sc_sdm_quantizer::sig_proc(void) {

double vdiff = input_gain * (sc_in_vinp.read() - sc_in_vinn.read());

sc_out_sync.write(!sc_out_sync.read());

if (vdiff <= threshold[0])
sc_out_vout.write(-2);

else if (vdiff > threshold[0] && vdiff <= threshold[1])
sc_out_vout.write(-1);

else if (vdiff > threshold[1] && vdiff <= threshold[2])
sc_out_vout.write(0);

else if (vdiff > threshold[2] && vdiff <= threshold[3])
sc_out_vout.write(1);

else if (vdiff > threshold[3])
sc_out_vout.write(2);

}

@ (cross(V(vclk) - vtrans_clk, 1)) begin
vdiff = gain*(V(vinp)-V(vinn));

if(vdiff <= level[0]) begin
vo = -2;
end else if (vdiff > level[0] && vdiff <= level[1]) begin
vo = 1;
end else if (vdiff > level[1] && vdiff <= level[2]) begin
vo = -0;
end else if (vdiff > level[2] && vdiff <= level[3]) begin
vo = 1;
end else if (vdiff > level[3]) begin
vo = 2;
end

end

//
// assign the outputs
//
V(vout) <+ transition(vo, tdel, trise, tfall);

VerilogA SystemC-AMS

Design	flow

13

• Specte (or	other	spice	simulator)	is	always	required	to	measure	the	transistor	distortion	for	specific	operating	point.	This	is	done	only	
once.

• Python can	be	used	to	automatically	run	the	rest	of	the	flow,	configuring	and	launching	the	SystemC-AMS	executable.
• Python can	replace	Matlab using	the	right	libraries	like	numpy.
• Python	+	SystemC-AMS	solution	is	virtually	free	and	run	in	all	major	operating	systems.
• Each	SystemC-AMS simulation	takes	less	than	1	second.	Spectremodel	requires	more	than	2	minutes.

Change	input	amplitude

Maximum	SNR	with	ideal	model

14

Maximum	SNR	with	ideal	model	(zoom)

15

SNR	with	polynomial	fit

16

SNR	with	polynomial	fit	(zoom)

17

Dynamic range

18

Conclusion

Pros:
• SystemC-AMS	is	a	good	tool	for	early	phase	studies.
• Much	faster	than	spice	(120x in	this	example!)
• By	developing	his	own	simulator,	the	designer	gains	a	better	understanding	of	the	circuit.
• The	simulation	can	be	customized	and	tuned	for	the	designer	needs.
• The	simulator	runs	on	local	machine	(independently	of	the	OS).
• It	is	free	and	can	be	easily	controlled	by	Python	(or	other	script	languages).

Cons:
• It’s	more	difficult	and	time	consuming	to	develop	a	systemc-ams model	than	spice	(learning	
curve).

• The	designer	need	to	ensure	its	correctness	and	accuracy	(compare	with	spice	for	peace	of	mind).

19

Other	resources

• IEEE	1666.1-2016	Standard:	
https://standards.ieee.org/findstds/standard/1666.1-2016.html
• Wikipedia	Page:	https://en.wikipedia.org/wiki/SystemC_AMS
• How	to	compile	SystemC/SystemC-AMS	libraries:
• Windows:	https://goo.gl/NjQBtD
• Linux:	https://goo.gl/rC9ZLv
• Mac:	https://goo.gl/69nfz8

• PLL	design	example	(personal	project):	https://goo.gl/ZaFExo

20

Thank	you

