Virtual Prototyping of Power Converter Systems based on AURIX™ using SystemC AMS

COSEDA User Group Meeting 2021

Radovan Vuletić (IFAG ATV SYS SAE HW)
Selvaraj Dineshkumar (IFIN ATV MC PD SW VIM)
Thomas Arndt (COSEDA Technologies GmbH)
2021-11-09
- restricted -

Motivation

Mixed-Signal Virtual Prototyping:

- Eases taking into the operation of power converter on application level
- Improves T2M early start w/o real HW available
 - development of control algorithm
 - productive SW development
- Prevent malfunctions and laboratory equipment damage
- Enables exact reproducibility, corner cases can be analyzed to it limits

Infineon Proprietary

Unidirectional Series-Parallel Resonant LLC DC/DC Converter (1)

	Nominal	Minimum	Maximum
DC Bus Voltage [V]	380	360	400
Battery Voltage [V]	280	250	420
Load Power [W]	3300	400	3700

Infineon Proprietary

Unidirectional Series-Parallel Resonant LLC DC/DC Converter (2)

Low voltage testbench

LLC Demonstrator full mounted

Unidirectional Series-Parallel Resonant LLC DC/DC Converter (4)

Input voltage 60 V_{DC} , R_{LOAD} 23,5 Ω , Switching frequency 120 kHz

Unidirectional Series-Parallel Resonant LLC DC/DC Converter (5) Selection of HF Transformer

HF Transformer is crucial component for operation of LLC converter, since it directly influences switching frequency range (PWM and selection of power switches), determines a transfer function of system

and implicitly influences the efficiency of overall system

Equivalent ac circuit with the leakage inductance in consideration.

LLC Transfer Function

$$M_{gl}^{ac} = \frac{(j\omega L_{m})/(R_{e} + j\omega L_{r2})}{(j\omega L_{m})/(R_{e} + j\omega L_{r2}) + j\omega L_{r} + 1/j\omega C_{r}} \times \frac{R_{e}}{(R_{e} + j\omega L_{r2})}$$

If $L_{ro} = 0$ (no external inductance), primary stray inductance is used as resonant inductance (but the secondary stray inductance has to be taken into the account as well)

$$L_r = L_{r1} + L_m ||L_{r2}||$$

restricted

LLC Transfer Function (Gain vs. Frequency)

Overview

- Mixed-Signal Virtual-Prototype
- Processor Model (AURIX™)
 - SystemC TLM2
- LLC Resonant Converter
 - SystemC AMS
- HW/SW Co-Debugging

Overall System Model

Model of Unidirectional Series-Parallel Resonant LLC DC/DC Converter

Infineon Proprietary

Infineon/Synopsys AURIX™ Processor Model & Integration of **Processor Model**

Host Computer / Server / Cloud

Software and Hardware Debugging

Conclusions

- Virtual Prototyping approach is sucesfully implemented on application level for isolated unidirectional DC/DC converter.
 - HW is sucesfully modeled
 - Control algorithm is sucesfully implemented and tested
 - iLLD's are implemented and tested
 - Overall system is taken into the operation
- Feedback is given to developers of AURIX™ Processor Model

Part of your life. Part of tomorrow.