UVM-SystemC in COSIDE®

Stephan Schulz (FhG 1IS/EAS),
Martin Barnasconi (NXP)

\

x ~ Fraunhofer 5015

aceellera) s DVCOIN

SYSTEMS INITIATIVE

UVM what is it?

e Universal Verification Methodology to create modular,
scalable, configurable and reusable testbenches based
on verification components with standardized interfaces

e Class library which provides a set of built-in features
dedicated to verification, e.g., phasing, component
overriding (factory), configuration, comparing,
scoreboarding, reporting, etc.

 Environment supporting migration from directed testing
towards Coverage Driven Verification (CDV) which
consists of automated stimulus generation, independent
result checking and coverage collection

ll IIIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

UVM what is it not...

e Infrastructure offering tests or scenario’s out-of-the-box:
all behaviour has to be implemented by user

e Coverage-based verification templates: application is
responsible for coverage and randomization definition;
UVM only offers the hooks and technology

e Verification management of requirements, test items or
scenario’s

e Testitem execution and regression —automation via e.g.
the command line interface or “regression cockpit” is a
shell around UVM

.......................
306'8//8]' a L DVGCOIN
© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Outline

e Part A - Introduction
e Part B—UVM Elements and Applications
e Part C— Further steps & Outlook

aceellera » DVEOIN
© Accellera Systems Initiative 4 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Main concepts of UVM (1)

e Clear separation of test stimuli (sequences) and test bench

— Sequences are treated as ‘transient objects’ and thus independent
from the test bench construction and composition

— In this way, sequences can be developed and reused independently

* Introducing test bench abstraction levels

— Communication between test bench components based on
transaction level modeling (TLM)

— Register abstraction layer (RAL) using register model, adapters, and
predictors

* Reusable verification components based on standardized
interfaces and responsibilities

— Universal Verification Components (UVCs) offer sequencer, driver and
monitor functionality with clearly defined (TLM) interfaces

DESIGN AND VE%QJ'?ON"‘
acoellera . DVEOIN
© Accellera Systems Initiative 5 . CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Main concepts of UVM (2)

 Non-intrusive test bench configuration and customization

— Hierarchy independent configuration and resource database to store
and retrieve properties everywhere in the environment

— Factory design pattern introduced to easily replace UVM components
or objects for specific tests

— User-defined callbacks to extend or customize UVC functionality
 Well defined execution and synchronization process

— Simulation based on phasing concept: build, connect, run, extract,
check and report. UVM offers additional refined run-time phases

— Objection and event mechanism to manage phase transitions

* Independent result checking

— Coverage collection, signal monitoring and independent result
checking in scoreboard are running autonomously

.......................
306'8//8]' a L DVGCOIN
© Accellera Systems Initiative 6 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Verification stack:

tools, language and methodology

Addition tool layer like “verification cockpit”
(e.g. vManager, vPlan)

Universal Verification) UVM-SystemC scope
Methodology UVM technology elements:
> ¢ Methodology = what
UVM (-SC /-AMS) Class library = how
Class library
I
|
I . Language and modeling technology elements:
SystemC(-AMS) Tool / simulator
compliant simulator

aceellera » DVEOIN
© Accellera Systems Initiative 7 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

UVM Layered Architecture

The top-level (e.g. sc_main) contains the
test(s), the DUT and its interfaces

The DUT interfaces are stored in a
configuration database, so it can be used
by the UVCs to connect to the DUT

The test bench contains the UVCs,
register model, adapter, scoreboard and
(virtual) sequencer to execute the
stimuli and check the result

The test to be executed is either defined
by the test class instantiation or by the
member function run_test

r

top (sc_main)

register
Test - g
sequence

Testbench (env)

\._______1

Yvirtual
sequencer

scoreboard

v Subscrj| ref
Reg model model

Subscr

v

Adapter }

[uvC1l (env))

[uvC2 (env) |

DUT !

2015

DESIGN AND VERIFICATION™

SYSTEMS INITIATIVE

© Accellera Systems Initiative

DVGCON

CONFERENCE AND EXHIBITION

estcoses |

Q

Sequences &

o
Il. Verification component , > § .
Functional | | Sequencer Scoreboard = |
L] C .
| s !
—————— ———ar—————— —_——--—————d ————| & k-
! : c|!
Command || Driver Monitor | Monitor g
A i el

(2015

\\ DESIGN AND VERIFICATION™
accellera o DVGON
—— © Accellera Systems Initiative 9 iR eme i C A T

SYSTEMS INITIATIVE

Why UVM in SystemC?

Elevate verification beyond block-level towards system-level

— System verification and Software-driven verification are executed by
teams not familiar with SystemVerilog and its simulation environment

— Trend: Tests coded in C or C++. System and SW engineers use an
(open source) tool-suite for embedded system design and SW dev.

Structured ESL verification environment

— The verification environment to develop Virtual Platforms and Virtual
Prototypes is currently ad-hoc and not well architected

— Beneficial if the first system-level verification environment is UVYM
compliant and can be reused later by the IC verification team

Extendable, fully open source, and future proof

— Based on Accellera’s Open Source SystemC simulator

— As SystemC is C++, a rich set of C++ libraries can be integrated easily .

015"
accellera | - DV I~
© Accellera Systems Initiative 10

CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Why UVM in SystemC?

e Support analogue DUTs with
SystemC AMS

e Reuse tests and test benches across
verification (simulation) and validation
(HW-prototyping) platforms

— requires portable language like C++ to
run tests on HW prototypes,
measurement equipment, ...

— Enables Hardware-in-the-Loop simulation
and Rapid Control Prototyping

accellera -
© Accellera Systems Initiative 11

SYSTEMS INITIATIVE

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

UVM In SystemC versus UV In
SystemVerilog

e UVM-SystemC follows the UVM 1.1 standard where possible
and/or applicable

— Equivalent UVM base classes and member functions implemented in
SystemC/C++

— Use of existing SystemC functionality where applicable
e TLM interfaces and communication
e Reporting mechanism

— Only a limited set of UVM macros is implemented
e usage of some UVM macros is not encouraged and thus not introduced
e UVM-SystemC does not cover the ‘native’ verification features
of SystemVerilog, but considers them as (SCV) extensions
— Constrained randomization
— Coverage groups (not part of SCV yet)

accellera . DVCON
© Accellera Systems Initiative 2 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Outline

e Part B—UVM Elements and Applications
— Components and Classes
— Register Model
— Abstraction re-use
— Generator
— Visualization

accellera o DVCON
© Accellera Systems Initiative i3 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

UVM Testbench setup

e Required minimum
— Test
— Testbench
— Agent
— Sequencer
— Driver
— Monitor
— DUT
— Scoreboard
e Optional
— More Agents
— Virtual Sequencers
— Register Model
— Extensive configuration on every element

accellera -
© Accellera Systems Initiative 14

SYSTEMS INITIATIVE

r

top (sc_main)

Test -

register
sequence

-Z_I'estbench (env) [config |)

Yvirtual
sequencer

scoreboard

v Subscr ref | |Subscr

Reg model

model

v

Adapter }

[uvC1 (env) |

[uve2 (env) |

— 4

J

2015

DESIGN AND VERIFICATION™

VGCON

CONFERENCE AND EXHIBITION

UVM agent

e Component responsible to drive

and monitor the DUT

e Typically contains three
components
— Sequencer
— Driver
— Monitor

* Could contain analysis
functionality for basic coverage
and checking

accellera -
© Accellera Systems Initiative 15

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

sequencer

seq_item_export

.
: analysis |

= = =y | = d
.I___J

|
|
|
|
|
|
(5
T

seq_item_port

driver

item_collected_pc)

monitor

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

UVM agent

e Possible configurations

e Active agent: sequencer and driver are
enabled

e Passive agent: only monitors signals
(sequencer and driver are disabled)

e Master or slave configuration
e Base class: uvm_agent

acce//el'a © Accellera Systems Initiative 16

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

sequencer

seq_item_export

.
: analysis |

= = =y | = d
.I___J

|
|
|
|
|
|
(5
T

seq_item_port

driver

item_collected_po

monitor

2015

DESIGN AND VERIFICATION™

VGCON

CONFERENCE AND EXHIBITION

UVM sequencer

 The sequencer controls and delivers
transaction data items upon request of
the driver*

* This allows to react to the current state
of the DUT for every data item
generated

e The UVM standard describes an
interface between sequencer and driver
that follows TLM (1.0) communication

e The sequencer serves as an arbiter for
controlling transactions from multiple
stimulus generators

e Base class: uvm_sequencer

accellera -
© Accellera Systems Initiative 17

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

se -
1)
e |
) S
! config | !
______ 4
sequencer Fm————- |
.
seq_item_export ! anaIyS|s [
|_ — _\’?;. — Jl
y
e N
seq_item_port item_collected_po
driver monitor
vif

W,

* Alternatively, there is a UVM
push sequencer (class
uvm_push_sequencer)
which pushes the sequence
items to the driver, but this is
not yet available in UVM-

SystemC
2015

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

UVM driver

The driver is responsible to create
the physical signals to drive the DUT

For this, the driver repeatedly
requests transactions, encapsulated
in @ sequence, via the sequencer,
and translates these to one or more
physical signal(s)

Connection between the driver and
the DUT is established by using a
dedicated channel, which is made
available via the configuration
mechanism

Base class: uvm_driver

© Accellera Systems Initiative 18

se -
1)
e |
) S
! config | !
______ 4
sequencer | _ _ _____ I
.
seq_item_export ! anaIyS|s [
|_ — _\’?;. — Jl
y
ol N
seq_item_port item_collected_po
driver monitor
vif
.
DESIGN AND VElgFQJJ?ON"‘
DVCON

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

UVM monitor

The monitor is a passive element
that ‘only’ captures the DUT signals

It extracts signal information from the
interface and translates this
information to abstract transactions

It will distribute this transaction to all
connected elements for e.g. coverage
collection and checking

Connection between the monitor and
the DUT is established by using a
dedicated channel, which is made
available via the configuration
mechanism

Base class: uvm_monitor

© Accellera Systems Initiative 19

se -
1)
e |
) S
' co nfig !
______ 4
sequencer | _ _ _____ I
.
seq_item_export I ana Iy5|s [
RSl
L)
seq_item_port item_collected_po
driver monitor
vif
.
DESIGN AND VElgFQJJ%N”
DVCON

CONFERENCE AND EXHIBITION

UVM verification component (UVC)

* A reusable verification component (UVM verification component (env)

(UVC) is a (sub-) environment which | config |
consists of one or more agents seq }——————
 The verification component or agen,E ------ :
agents may set or get configuration | _config
parameters sequencer | _____ --
e Anindependent sequence, which seatenuexport |} analysis
contains the actual transaction data, i
is processed by the driver via a seq_item_port | [tem_collected_po
sequencer driver monitor
e Each verification component is Vi
connected to the DUT using a

dedicated interface

 Base class: uvm_env (. 7/
DESIGN AND VEFgFQJ-?ON"‘
accellera N DVCON
© Accellera Systems Initiative 20 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

UVM sequences ——

~Scquence
== l I
e Sequences are part of the test scenario |_transaction |
and define streams of transactions —
. . transaction
 The properties (or attributes) of a —
transaction are captured in a sequence — —
item _transaction |
e Sequences are not part of the testbench ~— v A
hierarchy, but are mapped onto one or
more sequencers C seql O
e Sequences can be layered, hierarchical or
virtual, and may contain multiple _seq >
sequences or sequence items ~eal V7 ((Frens
e Sequences and transactions can be ——— sead
. . _seq2 |- q
configured via the factory >

accellera DVECDIN

© Accellera Systems Initiative 20 counTREER N
SYSTEMS INITIATIVE

UVM virtual sequence

(—
default ' confio |
= i config i
Test sequence f— :
,

 Avirtual sequence encapsulates one
or more sequences, which are
executed on the sub-sequencers in
each UVC agent, which are all
connected to the parent virtual
seguencer

 Avirtual sequence can be configured
as default sequence in a test, to
facilitate automatic execution on a
virtual sequencer or a sequencer
which belongs to a UVC agent B o

e Base class: uvm_sequence
(same as ‘normal’ sequences)

DESIGN AND VElgFQJJ?ONM
accellera DVCODN

© Accellera Systems Initiative 22 L T U T
SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

UVM virtual sequencer

e A virtual sequencer contains
references to its subsequencers
such as UVC sequencers or other
virtual sequencers

e Virtual sequencers process virtual
sequences which encapsulate
sequences for multiple verification
components

e Virtual sequencers do not execute
transactions on themselves but
‘offload’ this to its subsequencers

e Base class: uvm_sequencer
(same as ‘normal’ sequencers)

86'08//9"3 © Accellera Systems Initiative 23

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

7

Testbench (env) | |

virtual

scoreboard

Subscr ref | |Subscr
sequencer 1

model 2

[UVCL1 (env) |

~

-,

Drv

[UVC2 (env) |

,o————

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

UVM scoreboard

()
e The scoreboard performs -)
end-to-end checking by Testbench (env) | conf
comparing expected and processed scoreboard

transa CtionS virtual Subscrf| ref |ISubscr
sequencer 1 model 2

e These transactions are retrieved by

dedicated subscribers or listeners, which uvcl env) | [uve2 env)
implement the write method of the agent agent
analysis ports of each monitor, to which sar | cont | sar | cont |
these subscribers are connected
. . Drv | | Mon Drv || Mon
e A scoreboard may contain a predictor,

which acts as reference or golden model. | \ /
Alternatively, the scoreboard may
contain an algorithm to calculate the
expected transaction

e Baseclass: uvm_scoreboard

DESIGN AND VE'gFQ!'?ON"‘
accellera o DVCON
© Accellera Systems Initiative 24 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE NOTE: UVM-SystemC APl and LRM under review — subject to change

UVM test

é e~
default | .
= i config
Test sequence —]

r Testbench (env)

e Each UVM test is defined as a
dedicated test class, which
instantiates the testbench and
defines the test sequence(s)

 Reuse of tests and topologies is
possible by deriving tests from a test
base class

 The configuration and factory concept
can be used to configure or override
UVM components, sequences or .
seguence items

e Tests can be selected (passed) as
command line option*

e Base class: uvm_test

* Not yet available in UVM-SystemC
DESIGN AND VEgFQJ.W?ON"‘
accellera o DV LN
© Accellera Systems Initiative 25 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE NOTE: UVM-SystemC APl and LRM under review — subject to change

UVM testbench

.

. : :) — .
A testbench is defined as the Testbench ery]
complete environment which S
. . . scoreboard
instantiates and configures the virtual I e | e
UVCs, scoreboard, and virtual sequencer L}J model Lz,_
sequencer if avallable. | Gvciem)| (oveaem

e The UVCs are sub-environments in \ agent agent
d tEStbenCh Sqr [Ecin_fj Sqr {Ecin_fj

e The testbench only makes the orv | [vion orv {[vion
connections between the &)
scoreboard and virtual sequencer /

to each UVC; the connection
between UVCs and the DUT is
arranged within the UVCs

accellera - DV O
© Accellera Systems Initiative 26 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE NOTE: UVM-SystemC APl and LRM under review — subject to change

UVM configuration mechanism

(>
default | o
= i config i
Test sequence bo— :
e Central resource database to store

and retrieve any type specific Testbench (env)
information of UVM and non-UVM
objects at any place in the
verification environment

e Configuration is facilitated during
the build process and/or run time

e Information can be accessedby || @EeTt 0o @Eet
name (string) or arbitrary type | conf | | conf |

« Scope (context) of accessibilityof || oLl oo
information can be defined by the
application X)

_ .
e Easy access to resource database via the
configuration mechanism uvm_config _db
e Base class: uvm_resource
DESIGN AND VE!gFQ!'?ON"‘
accellera - DVCOIN
© Accellera Systems Initiative 27 R e e

SYSTEMS INITIATIVE NOTE: UVM-SystemC APl and LRM under review — subject to change

Top, Tests and Testbench

top (sc_main)

e The top-level (e.g. sc_main) est defau't confie|
contains the test(s) and the R —
DUT T(éstbench (env) ' config |
The interface to which the DUT virtual Subscsrconf;oaribscr
is connected is stored in the sequencer L}._I mode Lt
configuration database, so it vt)l (Ve e |
can be used by the UVCs to " agent “gent
connect to the DUT Voo tlll || sar Voot

* The test to be executed is oo oo ore |[rvon
either defined by the test class —
instantiation or by the N ———— > 4
argument of the member i Dot
function run_test Wi J

AMS 1 DIG H sw
\.
3@ © Accellera Systems Initiative 28 ng“!am

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

Work-in-Progress: Register Abstraction Layer

Register Abstraction Layer m

Register model containing registers, fields, blocks, etc. testing
Register callbacks testing
Register adapter, predictor, sequences and testing
transaction items

Register front-door access testing
Build-in register test sequencers development
Memory and memory allocation manager development
Virtual registers and fields development
Register back-door access (hdl_path) study
Randomization of registers study

2015

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

Application Examples

aceellera . DYCON
SYSTEMS INITIATIVE

UVM-SystemC Generator

 Generator is based on easier uvm code generator for
SystemVerilog from Doulos
(http://www.doulos.com/knowhow/sysverilog/uvm/
easier_uvm_generator/)

 Generator uses template files as input, which are
similiar to the Doulos generator

 Generates complete running UVM-SystemC
environment

accellera . DVCON
© Accellera Systems Initiative 32 CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE

UVM-SystemC Generator

 Generated UVM objects and files:
— UVM_Agent
— UVM_Scoreboard
— UVM_Driver
— UVM_Monitor
— UVM_Sequencer
— UVM_Environment
— UVM_Config
— UVM_Subscriber
— UVM _Test
— Makefile to compile the generated UVM project
— Instantiation and DUT connection

accellera - DVCON
© Accellera Systems Initiative 2 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

UVM-SystemC Generator

* Input file for generating ¢ General Config File
a complete agent A

#Additional includes
inc_path = include

. . #DUT toplevel name
— Transaction items aut_top = myat
#Pin connection file
dut_pfile = pinlist

— Interface ports

e DUT connection to
i agent interfaces (DUT

#transaction item
trans_item = data_tx

port <-> agent port))

trans_var = int data
#interface ports
if _port = sc_core::sc_signal<bool> clk Iclkndata_if
if _port = sc_core::sc_signal<bool> reset_n clk clk
if port = sc_core::sc_signal<bool> scl reset_n reset_n
if port = sc_core::sc_signal<bool> sda rw_masterl rw_master
if port = sc_core::sc_signal<bool> rw_master scll scl
sdal sda
if clock = clk
if _reset = reset_n lagent2_if
#agent mode

agent_is_active = UVM_ACTIVE

2015

DESIGN AND VERIFICATION™

accellera DVCODN

© Accellera Systems Initiative 33 L T U T
SYSTEMS INITIATIVE

e DUT is a minimalistic ALU

e Tests checks basic arithmetic

with static operands

e Plain SystemC Testbench as

reference

 Re-implementation with

UVM-SystemC

Hands-on example (Generator)

e

top (sc_main)

y =

y =

(

Test

default
sequence

~—

virtual
sequencer
4

r T(égtbench (env)

scoreboard

|Subscr
|

,o————

| uUvC2 (env))

clk f——— E
dk_gen HALU ¢ Op
rst - X
- 4
3008/[9[’3 © Accellera Systems Initiative 34

SYSTEMS INITIATIVE

NNNNNNNNNNNNNNNNNNNNNNN

Hands-on example (Visualizer)

m env_uvc2:uve2 env m env uvel juvel env

top_test base : top_test base

m_top_env :top_env

m_scoreboard : top scorcboard

m_agent: uvc2 agent

m_agent: uvcl agent

m_subscriber uvc2: uve2 subscriber

m_subscriber uvcl: uvcl subscriber

m_agent: uvcl agent

m_agent: uvc2 agent

m_sequencer: uvcl sequencer<REQ,RSP> m_monitor: uvcl _monitor

m_monitor: uvc2 monitor

I

m_driver: uvel driver<REQ,RSP>

SYSTEMS INITIATIVE

© Accellera Systems Initiative 35

2015

DESIGN AND VERIFICATION™

VGCON

CONFERENCE AND EXHIBITION

Benefits

* Avoidance of boilerplate code copy & paste disasters

* Manual input amount as in hand-crafted testbench
— DUT setup
— Test sequence
— Driver implementation for DUT driving
— Monitor implementation for DUT interpreting

e UVM conformity
 Re-Usage because of modularity more likely

accellera - DVEON
© Accellera Systems Initiative % CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Re-use across abstraction levels (1)

" g J e Design of a complex system
—— - within a SystemC environment
Simulation - SystemC
) — One-time verification setup with
Test Ssqiia ce \configy
— ——— UVM-SystemC
Testbench (env) :confie}
3‘ eual || __scoreboard — Behavioral model for concept
sequence 5”';5“ m:f . 5“25”
______ = phase
agent — Detailed model for further
svotemc M 1] Svetemc implementation require additional
=) tests
¢ DUT
b SystemC - Behavioral
_ J
DESIGN AND VEFgFQJ‘?ONW
accellera - DV O
© Accellera Systems Initiative ¥ CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

.
| =i

Re-use across abstraction levels (2)

e Continued use of previous
: verification setup by running the
verification environment as a
real-time model on a HiL

(Real Time Hardware

~ —_ . . ---- N
== default |config
Test sequence - "'—J

(" ’
Testbench (env) [config}
\

~Virtual scoreboard I 3 tfo rm
seqt:ence 5“115" Sut2>scr p
o) | — Exchange of UVM driver

verification components suitable
for the board

— Additional tests specific to new

Monitor
Emulation

Driver
Emulation

. J
DUT model details
. FPGA - Emulation
DESIGN AND VEFgFQJF?ON"‘
accellera - DVCOIN
© Accellera Systems Initiative 3 peecECcsEecsiam

SYSTEMS INITIATIVE

Re use across abstraction levels (3)

F._!__

e Continued use of previous
: verification setup by running the
verification environment as a
real-time model on lab-test
3 equipment
== — — Exchange of UVM driver

verification components necessary

(Real Time Hardware

r’ R —]

seqguence

i T"é:stbench (env) iconfig|

agent

Monitor
Lab equip

Driver
Lab equip

— Re-use of all tests possible

i DUT
ASIC — 15t Silicon

accellera . DVCON
© Accellera Systems Initiative %9 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

download

Re-use across abstraction levels (4)

& i

monitor

A 4

y 3

I

 Simulation - SystemC

&

r’ R —]
Test sequence \—]

f P2 r——=- N
Testbench (env) :config}
\
|rtua SCOI'eboaI'd
sequence Subscr ref RlSubscr
1 model | 2 |

agent

Monitor
SystemC

Driver
SystemC

4 DUT
SystemC - Behavioral

SYSTEMS INITIATIVE

© Accellera Systems Initiative

A 4

_ integrate

rReal Time Hardware

r’ R —]
Test seqguence "_J

[_,7 r=—--
Testbench (env) config]
\
Ttua scoreboard
sequence Subscr ref JfSubscr
o 1 model 2

agent

Monitor
Emulation

Driver
Emulation

i DUT
FPGA - Emulation

40

rReal Time Hardware

y -

A
=1 default
Test sequence

Lconfigl

7

’ r====
Testbench (env) config]
\
TRAVE] scoreboard
sequence Subscr ref Subscr
1 model 2

agent

Monitor
Lab equip
vif

Driver
Lab equip

vif

DUT
ASIC — 15t Silicon

2015

DESIGN AND VERIFICATION™

VGCON

CONFERENCE AND EXHIBITION

Outline

e Part C— Further steps & Outlook

— Standardization in Accellera
— Next steps
— Summary and outlook

aceellera " DVCON

SYSTEMS INITIATIVE

Standardization in Accellera

e Standardization in SystemC
Verification WG ongoing

— UVM-SystemC Language
Reference Manual (LRM)
completed

— Improving the UVM-SystemC
Proof-of-Concept (PoC)
implementation

— Creation of a UVM-SystemC
regression suite started
e Draft release of UVM-SystemC
planned for CW48/49 2015

— Both LRM and PoC available under
the Apache 2.0 license

3008//9[’3 © Accellera Systems Initiative 42

SYSTEMS INITIATIVE . NOTE: UVM-SystemC APl and LRM under review — subject to change

UVM-SystemC
(UVM-SO)

Language Reference Manual

LODRAFT

6.4 uvm_factory

The class wvm_factory imploments 1 factory paera. A singletan factory Estance s crated for 2 given simalation
run. Object and componsnt types are Tegistersd with the Sactory wing proxes to e acteel chjects 2d componsnts
baing creatod The classes wvm_object_regiztry=T= md uvm_component_registry=T= ars nsed to proxy chjocts
f typs wvm_ebject and wrm_component repsctivaly. Thuss rugisty classs both wie the uvim_objecs_wrapper
21 abamact base class

641 Clazs definition

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Next steps in VWG

e Main focus this year:
— Further mature and test the proof-of-concept implementation
— Extend the regression suite with unit tests and more complex
(application) examples
* Next year...
— Finalize upgrade to UVM 1.2 (upgrade to UVM 1.2 already started)
— Add constrained randomization capabilities (e.g. SCV, CRAVE)
— Introduction of assertions and functional coverage features

e ..and beyond: |IEEE standardization
— Alignment with IEEE P1800.2 (UVM-SystemVerilog) necessary

accellera - DVEON
© Accellera Systems Initiative 43 CONFERENCEANDEXHBITION

SYSTEMS INITIATIVE

Summary and outlook

 Good progress with UVM-SystemC standardization in
Accellera

e UVM foundation elements are implemented

* Register Abstraction Layer currently under
development

 Review of Language Reference Manual finished and
Proof-of-concept implementation ongoing

e Draft release of UVM-SystemC planned for CW48/49
2015

— Updates of LRM and PoC implementation afterwards

accellera . DVCON
© Accellera Systems Initiative 44 CONFERENCEANDEXHBITION
SYSTEMS INITIATIVE

	UVM-SystemC in COSIDE®
	UVM what is it?
	UVM what is it not…
	Outline
	Main concepts of UVM (1)
	Main concepts of UVM (2)
	Verification stack: �tools, language and methodology
	UVM Layered Architecture
	UVM layered architecture
	Why UVM in SystemC?
	Why UVM in SystemC?
	UVM in SystemC versus UV in SystemVerilog
	Outline
	UVM Testbench setup
	UVM agent
	UVM agent
	UVM sequencer
	UVM driver
	UVM monitor
	UVM verification component (UVC)
	UVM sequences
	UVM virtual sequence
	UVM virtual sequencer
	UVM scoreboard
	UVM test
	UVM testbench
	UVM configuration mechanism
	Top, Tests and Testbench
	Work-in-Progress: Register Abstraction Layer
	Foliennummer 30
	UVM-SystemC Generator
	UVM-SystemC Generator
	UVM-SystemC Generator
	Hands-on example (Generator)
	Hands-on example (Visualizer)
	Benefits
	Re-use across abstraction levels (1)
	Re-use across abstraction levels (2)
	Re-use across abstraction levels (3)
	Re-use across abstraction levels (4)
	Outline
	Standardization in Accellera
	Next steps in VWG
	Summary and outlook

