Bringing Topology and Technology Variations from Circuit Models into COSIDE® System Models

Sören Kwasigroch, TU Kaiserslautern

Frank Schenkel, MunEDA GmbH

Reimund Wittmann, IMST GmbH

Coseda User Group Meeting 24th November 2022

- Problem
- Approach
- Example: Tire Pressure Metering System
- Results
- Conclusion

Design Flow with Coside, WiCkeD, IIP and the Cadence Design Framework

State of the Art: How can we combine Circuit & System Level?

- Use of Mixed-Level simulator coupling
 - Critical/ unknown components as circuit-level simulations
 - Too slow for software; requires licenses; inappropriate for embedded SW
- Automated model generation
 - Not enough desired automation; needs additional model verification
- Use of pre-existing SystemC AMS models & automated characterization of circuit
 - choosen Tool MunEDA WiCkeD
- <u>Novelty:</u> We model & maintain dependencies/sensitivities of circuit-level variations

- Problem
- Approach
- Example: Tire Pressure Metering System
- Results
- Conclusion

Overview for the Workflow of the proposed solution

Overview for the Workflow of the proposed solution

Linear Model of Dependencies

- 1. Given and defined working point and range (min, max) for each considered parameter
 - Use same parameter for dependent variations
 - Use combination of parameter to model dependencies (correlations)
- 2. WiCkeD determines a linear dependency model of performances from all parameter variations
- 3. Minima and Maxima of performances are optimized by WiCkeD
- 4. Exported of model in JSON

Import into SystemC AMS / COSIDE

TU KL's Bridge2Circuit C++ library is an "add-on" for each block, but does **globally**

- Read JSON File with dependency models
- Set parameter to concrete values in simulation run
 - (e.g. working points, corner cases, optimization)
 - Computes performances of each block with globally set variations
- Run (Coside) system simulation(s) to get system performances

- Problem
- Approach
- Example: Tire Pressure Metering System
- Results
- Conclusion

Use Case Example: Tire Pressure Metering System (TPMS)

Goals:

- Validating of the System performances
- Target System for System optimization

Scenario

Differential output

100e-3

-50e-3

- Frequency: 1 Khz
- Ideal sampling

Neg_Sample

Circuit Level Part: Operational Amplifer

Derived from a measurement electronic book¹

- Input performances
 - Outputrange_min/max
 - Offset Error
 - loop_gain_20db
- Main characteristics
 - Out = min{outputrange,v0*Vin}

- Problem
- Approach
- Example: Tire Pressure Metering System
- Results
- Conclusion

Dimensions of the Import

- Characterization data of MunEDAs WiCkeD Tool:
 - 69 parameter
 - 5 performances
 - 10 evaluation of simulation, for minima and maxima of the performances
 - Sensitivity of the parameter to the performances
 - Simulated 35334 simulations with 2 simulators in parallel for around 36 hours

System Model results with educated guessed performances

System Model results with sensitivity-aware performances

System Optimization Main Idea

Optimization:

- Change design parameters (e.g. length and/or width of transistors)
- Make performances fulfill specifications $f \le f_b$ (e.g. power ≤ 1 μW)
- Additional considerations
 - Operating conditions (e.g. temperature, supply voltage)
 - Process variations & mismatch
 - Ageing
- Optimization can be applied at all levels of abstraction (block, IP, system, ...)

System Optimization Results

Performance	Optimization Goal	Initial	Final
outputRange_max	maximize	935.3 mV	8.947 V
responseTimeToSuddenLoss_sec	minimize	569 ms	370 ms

Duration: 20 min

system evaluations (simulations): 711

System Optimization Results

- Problem
- Approach
- Example: Tire Pressure Metering System
- Results
- Conclusion

Core Advantages of this Workflows

- Approach is semi-automatic
- Based on re-use of models
- Brings selected parameter-dependencies to system level simulation
- Allows verification and system optimization within given limits by selected bounds, performances, ...

Time for your

Questions!

GFFÖRDERT VOM

